1,矩阵的定义及相关符号

X1+X2+X3=8,X1+2X2+X3=7,X1+X2+3X3=6,对应矩阵A=[1 1 1;1 2 1;1 1 3],B=[8 7 6].其中AX=B

矩阵的定义及相关符号

2,请详细介绍一下数学中的矩阵谢谢

矩阵 是大学数学的一个基础学科,是线性代数里面的知识点,他是研究n阶行列式的基本数学工具,它和 “微积分”“概率论” 和在一起就是大学数学的 三个基本数学分析工具。 矩阵 的就是研究一个二维数学空间的,我们用最简单的,x, y来表达 就是n 行 m,列数学方程也就是从X1 到Xn, Y1到Yn 的一个表达式,用矩阵表达,就是一个二维表格,,先解出简化表达式,再通过已知条件,解出值来

请详细介绍一下数学中的矩阵谢谢

3,矩阵的概念

矩阵 这是一个多义词矩阵 - 矩阵切换器矩阵全称为矩阵切换器,是用来切换各种信号的输入输出。矩阵 - 数学术语矩阵(Matrix)本意是子宫、控制中心的母体、孕育生命的地方。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵 - 漫画家-矩阵矩阵,真名汪涛,男,生于1983年,毕业于西安美术学院。现为漫画家,插画家,CG绘画艺术家,ACAA中国数字艺术专家委员会专家。望采纳
长方形
首先不存在:ab=e而ba不为e(a,b均为n阶方阵)。 因为可由ab=e推出ba=e。 之所以定义时将ab=e和ba=e都写上。我认为是因为这两个条件等价,都可以对一个矩阵是否是另一个矩阵的逆矩阵进行判断,多给出一个判断的途径,没什么不好。至于理解上,可以看作是“或”的关系。

矩阵的概念

4,谁能告诉我矩阵是什么

矩阵是多进多出,也就是说有几个信号进入,然后分出几个信号,用户想看哪个都可以,不过一般都是进多出少,图不是一个
矩阵 矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组: a1x+b1y+c1z=d1 a2x+b2y+c2z=d2 a3x+b3y+c3z=d3 来说,我们可以构成两个矩阵: a1b1c1a1b1c1d1 a2b2c2a2b2c2d2 a3b3c3a3b3c3d3 因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。 矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状。随后移动处筹,就可以求出这个方程的解。在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年。 数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。 矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。 历史 矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。 作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德·威廉·莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔·克拉默其后又定下了克拉默法则。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。 1848年詹姆斯·约瑟夫·西尔维斯特首先创出matrix一词。研究过矩阵论的著名数学家有凯莱、威廉·卢云·哈密顿、格拉斯曼、弗罗贝尼乌斯和冯·诺伊曼。 定义和相关符号 以下是一个 4 × 3 矩阵: 某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。 在C语言中,亦以 A[i][j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的) 此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。 一般环上构作的矩阵 给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。 若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。 在维基百科内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。 分块矩阵 分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵可分割成 4 个 2×2 的矩阵。 此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。 对称矩阵 对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。 埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。 随机矩阵所有列都是概率向量, 用于马尔可夫链。 矩阵运算 给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例: 另类加法可见于矩阵加法. 若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如 这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn. 若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中 (AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。 例如 此乘法有如下性质: (AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律"). (A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。 C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。 要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。 对其他特殊乘法,见矩阵乘法。 线性变换,秩,转置 矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系: 以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。 矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。 m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性: (A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

5,矩阵的意思

英文名Matrix(矩阵)本意是子宫、母体、孕育生命的地方,同时,在数学名词中,矩阵用来表示统计数据等方面的各种有关联的数据。这个定义很好地解释了Matrix代码制造世界的数学逻辑基础。   数学上,矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组。   a1x+b1y+c1z=d1   a2x+b2y+c2z=d2   a3x+b3y+c3z=d3   来说,我们可以构成两个矩阵:   a1b1c1a1b1c1d1   a2b2c2a2b2c2d2   a3b3c3a3b3c3d3   因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。   矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。   数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。   矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论
简单说九是矩形形状的 “阵”矩形就是正方形或长方形
矩阵 矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组: a1x+b1y+c1z=d1 a2x+b2y+c2z=d2 a3x+b3y+c3z=d3 来说,我们可以构成两个矩阵: a1b1c1a1b1c1d1 a2b2c2a2b2c2d2 a3b3c3a3b3c3d3 因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。 矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状。随后移动处筹,就可以求出这个方程的解。在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年。 数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。 矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。 历史 矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。 作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德·威廉·莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔·克拉默其后又定下了克拉默法则。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。 1848年詹姆斯·约瑟夫·西尔维斯特首先创出matrix一词。研究过矩阵论的著名数学家有凯莱、威廉·卢云·哈密顿、格拉斯曼、弗罗贝尼乌斯和冯·诺伊曼。 定义和相关符号 以下是一个 4 × 3 矩阵: 某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。 在C语言中,亦以 A[i][j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的) 此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。 一般环上构作的矩阵 给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。 若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。 在维基百科内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。 分块矩阵 分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵可分割成 4 个 2×2 的矩阵。 此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。 对称矩阵 对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。 埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。 随机矩阵所有列都是概率向量, 用于马尔可夫链。 矩阵运算 给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例: 另类加法可见于矩阵加法. 若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如 这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn. 若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中 (AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。 例如 此乘法有如下性质: (AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律"). (A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。 C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。 要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。 对其他特殊乘法,见矩阵乘法。 线性变换,秩,转置 矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系: 以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。 矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。 m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性: (A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

文章TAG:矩阵  通俗  理解  定义  矩阵的通俗理解  
下一篇